## Molecular diagnostics. L1 Lecturer: Zhussupova A.I.





### Concept of Molecular Diagnostics

### **Wistory of Molecular Diagnostics**

### Impact on Human Diseases

### **Basis for Molecular Assay**

### Management of the course

The use of molecular biology techniques to expand scientific knowledge of the natural history of diseases, identify people who are at risk for acquiring specific diseases, monitor disease, determine appropriate treatment strategies, and predict disease outcomes.

## The Molecular Biology Time

1865

1953

1970

1977

**20**01

85

fedicinisch-chemisch. UNTERSUCHUN

- **NA Extraction Gregor Mendel, Law of Heredity**
- 1869 **Johann Miescher, Purification of DNA**
- 1949 **Sickle Cell Anemia Mutation** 
  - Watson and Crick, Structure of DNA
    - **Recombinant DNA Technology** 
      - **DNA sequencing** 
        - **In Vitro Amplification of DNA (PCR)**
        - **The Human Genome Project**

### **Impact on Human Diseases: Novelty**

**Discovery** of potential novel molecular markers of human diseases

**Identification** of novel molecular markers of human diseases

**Utility** of molecular markers to develop useful molecular assays for detection, diagnosis, and prediction of disease outcomes

### Impact on Human Diseases: Practical application

### **Diagnostic**-Identity of a disease

### **Prognostic**-Outcome of a disease

### **Predictive**-Possibility of a disease

### **Therapeutic-Response of a disease to treatment**



## **Basis for Technology: Target specialty**

Nucleic acids are targeted by molecular assays

- Genetically-based diseases can be diagnosed
- Specificity can be controlled
- Single base changes can be detected
- Expression of gene product is not required
- Targets can be amplified >10<sup>5</sup>



### **Basis for Molecular Assay: Pathogenesis**

Understanding molecular pathogenesis of human disease enables effective utilization of molecular assays

### Diagnostic

 Distinguishing variants of human disease based on presence of specific molecular markers (chromosome translocations in Burkitt's lymphoma: *c-myc*)

### **Basis for Molecular Assay: Pathogenesis**

Understanding molecular pathogenesis of human disease enables effective utilization of molecular assays

### Prognostic

• Prediction of likely patient outcomes based on presence of specific molecular markers (gene mutations predicting clinical course in cancer)

### **Basis for Molecular Assay: Pathogenesis**

Understanding molecular pathogenesis of human disease enables effective utilization of molecular assays

### Therapeutic

 Prediction of response to specific therapies based on presence of specific molecular markers (gene mutations predicting poor drug sensitivity in lung cancer: p53, k-ras)

### **Basis for Molecular Assay: Molecular biology**

### **>** Genetic Lesions in Human Disease

- Identification of genetic markers
- Identification of disease-related genes
- Molecular targets for assay development

### **Basis for Molecular Assay: Molecular biology**

### > Characterization of Gene Sequences

- Facilitates characterization of disease-causing mutations
- Molecular targets for assay development

## Molecular Oncology

- DIAGNOSTIC/PROGNOSTIC INFORMATION PROVIDED BY:
- Gross alterations in DNA content of tumors
- Cell cycle information
- Molecular Markers of Clonality
- Oncogene/Tumor Suppressor gene mutations
- Tumor Specific Translocations
- "Tissue specific" mRNA in tumor staging
- Minimal residual disease determination

## Molecular Genetic Tests

Genetic test:

- Analysis of human
  - DNA
  - RNA
  - chromosomes
  - proteins
  - metabolites
- to detect heritable disease-related
  - genotype,
  - phenotype
  - karyotype
- for clinical purposes

## **Genetic Diagnosis**

"Purpose"

**Diagnostic Testing** 

Screening

Presymptomatic Testing

**Prenatal testing** 

**Preimplantation Diagnosis** 

Pharmacogenetic testing

Susceptibility to environmental agents

# Genetic Alterations

Chromosomal alterations "Gene-level" alterations Test Choice Cost Sample requirements **Turnaround time** Sensitivity/Specificity Positive/ Negative predictive value Type of mutation detected Genotyping vs mutation scanning

## Conventional Cytogenetics (Karyotyping)

Detect numerical structural chromosomal alterations

- trisomy
- monosomy
- duplications
- translocations, etc.

## Conventional Cytogenetics (Karyotyping)

evaluate all chromosomes

- prior specification of chromosome unnecessary
- detect unsuspected abnormality
- detect balanced alterations
  - (No gain or loss of genetic material)

FISH may be performed

characterize unexpected alterations

### Conventional Cytogenetics (Karyotyping)

Disadvantages:

- Need for live cells to grow in culture
  - failure <1%\*
- Turnaround time up to 10 days
  - 90% of results w/in 14 days\*
- Labor Intensive

## FISH

Use of fluorescently labeled probes to specifically visualize

- entire chromosomes (chr. paint probes)
- centromeres (centromeric probes)
- specific loci (locus-specific probes)

#### Metaphase

• All types of probes

#### Interphase

Centromeric and locus-specific probes only

## FISH

#### Identify:

- translocations
- marker chromosomes
- Small deletions/duplications w/ locus-specific probes
  - e.g., DiGeorge's syndrome

## Interphase FISH

#### rapid (<48 hours) detection of

- Numerical abnormalities
- Duplications/deletions/amplifications
- translocations
- mosaicism

## Interphase FISH

Prenatal Chr.13, 18, 21, X + Y

• approx. 75-85% of all clinically relevant abnormalities

Dual color FISH w/subtelomeric probes:

• Prenatal dx of chromosomal translocations

## Interphase FISH

Need for confirmatory conventional cytogenetic testing

Need to specify chromosome

• Information only about specific chromosome/locus tested

## Metaphase FISH

Supplement conventional cytogenetics

- Identify marker chromosomes
- extra unknown material attached to chromosome/loss of segment
- detect/identify rearrangements (incl. cryptic translocations)
- identify/quantify mosaicism

## Metaphase FISH

Need to specify chromosome/locus

- Multiple tests to identify marker chromosome
- Multiprobe FISH

#### Comparative genomic hybridization (CGH)

- Label normal and test DNA with separate dyes
- competitively hybridize to
  - Metaphase Spread or
  - cDNA array
- Detect Gains and losses

#### **Classical CGH**

- Hybridize to metaphase spread
  - Resolution approximately 5Mb
- Information on *all* chromosomes
- No need for culture
  - can use archival material (e.g., placenta, tumor, etc.)
- Single cell DNA amplification & CGH
  - applicable to preimplantation genetic diagnosis (PGD)

#### Array-based CGH

- hybridize to BAC-based or cDNA array
- Higher resolution (50kb vs 5MB)

#### PCR-based methods

- Real-time (quantitative) PCR
- microsatellite PCR
- Long-range PCR
- probe amplification techniques

#### Rapid

#### For *specific* loci

May be "multiplexed" for multiple loci

# Molecular Tests

Test for:

- karyotype
- gain or loss of genetic material ("dosage")
- genetic linkage
- known/recurrent mutations
- variations in lengths of repeat sequences
- alterations in DNA methylation
- unknown mutations in multiple genetic segments

## Types of mutations-gene

#### Point mutations

- Missense (change an amino acid)
- Nonsense (premature termination)
- Silent

#### Deletion

• Large variation in size

Insertion

Duplication

Splice site

Regulatory

Expanded repeat

## Missense mutations

#### When is a missense mutation significant?

- known structural and functional domain
- evolutionarily conserved residue
- independent occurrence in unrelated patients
- absent in large control sample
- novel appearance & cosegregation w/disease phenotype in pedigree
- In vitro loss of function
- restoration of function by WT protein

## Deletions

#### Complete/partial gene deletion

- Duchenne Muscular Dystrophy
- Alpha thalassemia

#### Multiple genes "contiguous gene syndromes"

- DiGeorge Syndrome
- TSC2-PKD1
- WAGR syndrome

## Insertions

Tay Sachs Disease

• 4bp insertion in Ashkenazi Jews

Hemophilia A

• L1 insertion in FVIII gene (1% of patients)

## Other mutations

Cap-site mutants

Mutations in initiation codons

Creation of a new initiation codon

Mutations in termination codons

Polyadenylation/cleavage signal mutations

## Mutation Testing

#### Tests for recurrent mutations

- Limited number of specific mutations
  - significant proportion of cases e.g., Factor V Leiden, Hemochromatosis

#### **Mutation Scanning Methods**

- Multiple "private" mutations of one or more genes
  - e.g., BMPR2 mutations in familial primary pulmonary hypertension (PPH)

#### Combination

• e.g., BRCA1/2, CFTR, etc.

## **Recurrent Mutation Tests**

#### Many rapid methods

#### High sensitivity/specificity

Test choice - laboratory preference

- Workflow, equipment, kit availability
- patent issues, etc.

#### Detect

- heterozygotes,
- compound heterozygotes
- homozygotes

## **Recurrent Mutation Tests**

#### Choice of mutation tested:

- Clinical syndrome
- Family history
- Ethnicity

#### Positive results:

- Unambiguous
- Technical false positive rare (most methods)
- Positive predictive value, penetrance, etc.

## **Recurrent Mutation Tests**

#### Negative predictive value:

- Population screening:
  - 1- (ethnic prevalence x [1 sensitivity for specific ethnic group])
- Family history (index case w/ unknown mut)
  - 1 (prior probability x [1- sensitivity for specific ethnic group])
- Family history (known mutation in index case)
  - 100%
- Affected individual (unknown mutation)
  - 0%

## **Recurrent Mutations**

#### Methods

- PCR-RFLP
- Allele-specific probes/primers
- Direct sequencing/"Minisequencing"/ Pyrosequencing
- Molecular Beacons/TaqMan probes
- Oligonucleotide ligation assay
- Mass spectroscopy-based methods

## Mutation Scanning Methods

#### Test one or more genes for unknown variation in

- Exons
- Introns
- splice sites
- Promoters/enhancers
- "locus control region"

## Screening methods

- Sensitivity determined by specific mutation
- Need for multiple conditions
- One datapoint per gene segment evaluated
- Screen for *presence*, not *identity* of mutation

## Mutation Scanning Methods

#### **Direct Sequencing**

- Screen presence and identity of mutation
- Bidirectional sequencing
- 2 data-points per base sequenced
- DNA sequencing
  - usu. multiple exons tested
  - splice-site mutations may be missed, especially mutations deep in large introns
- RNA sequencing
  - need for cells w/c express gene
  - "nonsense mediated decay"
  - RNA more labile

## Direct Sequencing Methods

#### Automated fluorescent sequencing

- DNA/cDNA amplification, purification, and re-amplification with Fluorescent "Big-Dye" terminators
- widely available
- need to visually scan electropherograms
  - verify "base calling", heterozygous bases

## Direct Sequencing Methods

#### Pyrosequencing

- limited to short sequences
- need to optimize algorithm for each segment

#### **Chip-based sequencing**

- rapid
- reduced sensitivity for heterozygous and frame-shift mutations

## Interpretation of Variant

Previously reported variant

- Known to be cause of disorder
- Known to be "neutral variation"

## Interpretation of Variant

#### New variant:

- Type likely to be associated w/disorder
  - frame-shift mutation
  - start "ATG" mutation
  - "Stop codon"
  - splice-junction mutation
  - non-conservative missense in active site

## Genetic testing additional considerations:

#### Benefits Vs. Risk of Testing:

- Availability of treatment/prevention of clinical syndrome
- Presence or absence of pre-clinical manifestations
- Discrimination:
  - Insurance
  - Employment
  - Confidentiality

## Additional Considerations

### Screening vs testing "index" case

Index case

- Known disease;
- negative result:
  - mutation not detected
  - carrier testing not possible

#### Locus heterogeneity:

Long QT, red-cell membrane defects, phenylketonuria, etc.

Variable "penetrance"

variable predictive value of positive results

Variable expressivity

## Additional Considerations

#### Potential interventions:

- Behavioral
  - lung cancer-risk smoking cessation;
  - heart disease risk diet/exercise;
  - risk of breast/colon cancer screening acceptance
- Medical
  - e.g., prophylactic mastectomy/thyroidectomy;
  - blood-letting/blood donation;
  - Antiarrhythmics, etc.

## Additional Considerations

Pre-morbid/clinical syndrome

- Is there a clinically identifiable syndrome?
- ? Need for intervention *prior* to clinical manifestations

#### **Technical considerations**

• e.g., Fragile X-syndrome

Patent issues

affect availability/cost of testing

## Factors affecting utility of genetic testing

Increased Utility

- High morbidity and mortality of the disease
- Effective but imperfect treatment
- High predictive power of genetic test (high penetrance)
- High cost or onerous nature of screening and surveillance methods
- Preventive measures that are expensive or associated with adverse effects

Decreased utility

- Low morbidity and mortality of disease
- Highly effective and acceptable treatment (i.e., no harm is done by waiting for clinical disease to treat patient)
- Poor predictive power of the genetic test (low penetrance)
- Availability of inexpensive, acceptable, and effective surveillance methods (or need for surveillance whether or not one has increased genetic risk)
- Preventive measures that are inexpensive, efficacious, and highly acceptable - e.g., folate supplementation

## Ordering Molecular Tests

Patient preparation: None

• Avoid heparin, it interferes with PCR

Specimens:

- Fresh whole blood: EDTA/Citrate
- Fresh tissues
- Frozen tissues
- Paraffin embedded tissues
- Slides etc.

## Ordering Molecular Tests

Specimen Handling

DNA-based tests:

• Room temperature, up to 72 hours (maybe more with special buffers)

**RNA-based tests:** 

- Deliver ASAP (4-6 hours)
- Special considerations for proprietary test.

## Ordering Molecular Tests

Essential info (Molecular Genetic Tests):

- Clinical information
- pedigree, if possible
- Race
- reason for testing

#### Informed consent:

• Nature of test; availability of genetic counseling; implications of positive and negative tests, etc.

### Current Techniques Applied to Molecular Pathology (one gene – one disease)

Southern blot

Dot blot/Reverse dot blot

Polymerase chain reaction

SSCP/DGGE

**RT-PCR** 

**DNA** sequencing

TaqMan, real-time PCR

Invader assay

In situ hybridization

*New* Techniques Coming to Molecular Pathology *(all genes – all diseases)* 

> Microarray hybridization High-density microarray hybridization Array comparative genomic hybridization Whole-genome sequencing

Classes of Novel/Unexpected Sequence Variants Identified by Whole Genome Sequencing

Missense variants of uncertain significance in known gene Variants and deleterious mutations in unknown gene(s) Deleterious mutations in unintended target (e.g., BRCA mutations in a baby)

## Ethical Dilemmas of Whole Genome Sequencing

Revelation of "off-target" mutations

Many revealed disorders will have no prevention or treatment

Revelation of nonpaternity, consanguinity, incest

Costs of genetic counseling and follow-up

Possible forensic uses of data

Data storage and privacy

Huge number of novel missense variants

### Conclusion

### What's So Great About Molecular Diagnostics?

- As many as 5,000 diseases have direct genetic causes
- High sensitivity and increased specificity for most tests adds diagnostic utility
- Potential for simple standardized procedures an automation
- rapid throughput
- Increased number of techniques for infectious diseases and tumor diagnostics
- A viable reflex for equivocal morphology
- Prices are falling

### Conclusion

The main goal of the molecular diagnostics is to provide molecular information that will combine with and complement information related to patient history and symptomology, clinical laboratory results, histopathological findings, and other diagnostic information to provide a more sensitive, precise, and accurate determination of disease diagnosis and/or guidance toward appropriate and effective treatment options.

## Youtube videos screened

What is newborn screening Animated video for parents

The Evolution of PCR

Molecular machines win Nobel Prize

# QUESTIONS OR COMMENTS?



#### To read:

https://www.nature.com/articles/s41579-021-00598-5; https://www.intechopen.com/online-first/75013; https://onlinelibrary.wiley.com/doi/10.1111/nan.12716; https://www.genome.gov/human-genome-project; https://bit.ly/3koBNmW; https://www.sciencedaily.com/releases/2021/09/210914111232.htm; https://www.bmj.com/content/375/bmj-2021-066288; https://www.frontiersin.org/articles/10.3389/fmed.2021.737602/full; https://bit.ly/3bX5VkM; https://bit.ly/30bWdIY; https://www.frontiersin.org/articles/10.3389/fgene.2021.720507/full; https://www.nature.com/subjects/cytogenetics https://bit.ly/3BZW0FM https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903223/; https://www.sciencedirect.com/science/article/pii/S1046202320300591; https://www.nature.com/subjects/disease-genetics; https://www.sciencedaily.com/releases/2021/08/210826170151.htm; https://www.nature.com/articles/s41467-021-22444-1

